Energy & Nutrient Optimization of NC Municipal Wastewater Treatment Plants

Nitrogen Removal: Part 2 of 2

February 18, 2021 10:00 - 11:45 AM

Grant Weaver CleanWaterOps

Energy & Nutrient Optimization of NC Municipal Wastewater Treatment Plants

Today: Biological Nitrogen Removal, Part 2

Last week: Introductions & Nitrogen Removal, Part 1 Feb 25: Activated Sludge, Part 1 - Oxygen Demand and Supply Mar 4: Activated Sludge, Part 2 - Bio-Tiger Model Mar 11: Biological Phosphorus Removal, Part 1 Mar 18: Biological Phosphorus Review, Part 2 Mar 25: North Carolina Case Studies, Part 1 (your plants!) Apr 8: North Carolina Case Studies, Part 2 (your plants!) Apr 15: Energy Management, Part 1 Apr 22: Energy Management, Part 2 Apr 29: North Carolina Case Studies, Part 3 (your plants!)

69.

Biological Nitrogen Removal: Convert LIQUID to GAS ...

BOD and TSS Removal: Convert LIQUID to SOLID ...

-03

-600

-500

400

300

-200

100

50

40

30

20-

Step 1: Convert Ammonia (NH₄) to Nitrate (NO₃)

Oxygen-rich Aerobic Process Don't need BOD for bacteria to grow Bacteria are sensitive to pH and temperature

Step 2: Convert Nitrate (NO₃) to Nitrogen Gas (N_2)

Oxygen-poor Anoxic Process Do need BOD for bacteria to grow Bacteria are hardy

Ammonia Removal -1st Step of N Removal

Ammonia (NH₄) is converted to Nitrate (NO₃)

Ammonia (NH₄)

Nitrification: Ammonia (*NH*₄) *is converted to Nitrate* (*NO*₃)

Oxygen Rich Habitat

MLSS* of 2500+ mg/L (High Sludge Age / MCRT / low F:M) ORP* of +100 to +150 mV (High DO) Time* (high HRT ... 24 hr, 12 hr, 6 hr) Low BOD

Consumes Oxygen Adds acid - Consumes 7 mg/L alkalinity per mg/L of $NH_4 \rightarrow NO_3$

*Approximate, each facility is different.

Nitrate Removal - 2nd Step of N removal

Nitrate (NO₃)

Adds DO (dissolved oxygen) Consumes BOD Gives back alkalinity ... beneficially raises pH

Denitrification: Nitrate (NO₃) is converted to Nitrogen Gas (N₂)

Oxygen Poor Habitat

ORP* of -100 mV or less (DO less than 0.3 mg/L) Surplus BOD* (100-250 mg/L: 5-10 times as much as NO₃) Retention Time* of 1-2 hours

Gives back Oxygen Gives back Alkalinity (3.5 mg/L per mg/L of $NO_3 \rightarrow N_2$)

*Approximate, each facility is different.

Nitrogen Removal

DO: Dissolved Oxygen ORP: Oxygen Reduction Potential MLSS: Mixed Liquor Suspended Solids HRT: Hydraulic Retention Time **BOD: Biochemical Oxygen Demand** Alkalinity

Step 1: Nitrification (Ammonia Removal) 1 mg/L or more +100 mV or more + 2500 mg/L or more 6 or more hours less than 20 mg/L 60 mg/L or more Alkalinity is lost

Step 1: Denitrification
(Nitrate Removal)
Less than 0.2 mg/L
Less than -100 mV
Same
1 or more hours
100 mg/L or more

Alkalinity is gained

Note: All numbers are approximations, "rules of thumb"

Grant Weaver g.weaver@cleanwaterops.com

Technology!

MLE Process (Modified Ludzack-Ettinger)

MLE (Modified Ludzack-Ettinger) Process

MLE (Modified Ludzack-Ettinger) Process

MLE Process Control:

Proper Internal Recycle Rate; not too much / not too little. ORP of +100 mV in Aerobic Zone for Ammonia (NH_4) Removal. ORP of -75 to -150 mV in Anoxic Zone for Nitrate (NO_3) Removal. Enough BOD to support Nitrate (NO_3) Removal.

Grant Weaver g.weaver@cleanwaterops.com

Sequencing Batch Reactor SBR

Sequencing Batch Reactor (SBR) Ammonia (NH₄) Removal: Nitrification

Sequencing Batch Reactor (SBR) Nitrate (NO₃) Removal: Denitrification

Sequencing Batch Reactor (SBR) Settle, Decant & Waste Sludge

Sludge Storage

Establish cycle times that are long enough to provide optimal habitats.

And, short enough to allow all of the flow to be nitrified and denitrified.

Optimizing SBR cycle time

<u>Too short</u>

Will not reach +100 mV for Ammonia (NH_4) Removal. Will not reach -100 mV for Nitrate (NO_3) Removal. Note: Temperature and BOD affect Air OFF cycle.

<u>Too long</u>

Wastewater will pass through tank before all Ammonia (NH_4) converted to Nitrate (NO_3).

And, before all Nitrate (NO₃) is converted to Nitrogen Gas (N₂).

<u>Just right</u>

Good habitats ...

ORP of +100 mV for 60 minutes

And, ORP of -100 mV for 30 minutes.

Bonus: Changing conditions will serve as a selector.

Grant Weaver g.weaver@cleanwaterops.com

Ammonia (NH₄) Removal Target: NH₄ < 0.5 mg/L

Nitrate (NO₃) Removal Target: NO₃ of 1-4 mg/L

Grant Weaver g.weaver@cleanwaterops.com

Helena, Montana Population: 31,500 5.4 MGD design flow

Google

Grant Weaver g.weaver@cleanwaterops.com

Nashville Dry Creek Population: 678,000 24 MGD design flow

land Rive (Abrahan hville Dry Cree S e DE E 6 Constant. CURE OF WE F Conservation Etermine (B) CON Dry Creek WWT on creek DN Citest EN TE

land Rive (Abathing hville Dry Cree S e DIT THE Constant. CURE ON WE F Conservation Etermine (B) CON Dry Creek wWT on creek DN Citeet

- Non

land Rive (Abathing hville Dry Cree S e DIT THE 6 10-mail CURE ON WE F Conservation Etermine (B) CON Dry Creek WWT on creek DN Citeet EN TE

land Rive (Abathing hville Dry Cree S e DIT THE 6 10-mail CURE ON WE F Conservation Etermine (B) CON Dry Creek wWT on creek DN Citeet EN TE

land Rive (Abathing hville Dry Cree S e DIT THE 6 10-mail CURE ON WE F Conservation Etermine (B) CON Dry Creek wWT on creek DN Citeet EN TE

land Rive (Abathing hville Dry Cree S e DIT THE 6 10-mail CURE ON WE F Conservation Etermine (B) CON Dry Creek wWT on creek DN Citeet EN TE

Grant Weaver g.weaver@cleanwaterops.com

Wichita, Kansas

Population: 390,000

54.4 MGD design flow

Wichita Pilot Study

reatime

Nitrogen Removal Cycle aeration on/off in Aeration Basin 6

1

Grant Weaver g.weaver@cleanwaterops.com

MASSACHUSETTS

Palmer, Massachusetts

Population: 12,200

5.6 MGD design flow

Palmer, Massachusetts Effluent BOD: 2011-2020

Cookeville, Tennessee Population: 33,500 15 MGD design flow

Cookeville - As Designed

.

Cookeville - As Now Operated

Cookeville - As Now Operated

Cookeville - As Now Operated

Norris, Tennessee Population: 1,450 0.2 MGD design flow

Norris

Harriman, Tennessee				
Actual Flow	Effluent Nitrogen (mg/L)		Effluent Phosphorus (mg/L)	
(MGD)	Historical Average	After Optimization	Historical Average	After Optimization
1.2	21.5	2.3	2.9	1.4

Acknowledgements

US EPA

Brendan Held & Craig Hesterlee

NC DEQ

Terry Albrecht, Corey Basinger & Ron Haynes

U MEMPHIS

Larry Moore, PhD

TENNESSEE Karina Bynum, Sherry Wang, George Garden & Jenny Dodd (**TDEC**), Brett Ward (**UTenn-MTAS**), Dewayne Culpepper (**TAUD**), Tony Wilkerson & Doug Snelson (**Norris**), Ronnie Kelly, Tom Graham & John Buford (**Cookeville**), David Tucker & Johnnie MacDonald (**Nashville**) & Ray Freeman (**Harriman**)

MASSACHUSETTS Gerry Skowronek & Kenny Lord (Palmer)

KANSAS Tom Stiles, Rod Geisler (retired), Shelly Shores-Miller, Nick Reams & Ryan Eldredge (**KDHE**), Jamie Belden & Becky Lewis (**Wichita**)

MONTANA Paul Lavigne (retired), Pete Boettcher, Josh Vial & Ryan Weiss (**MDEQ**), Eric Miller (**Chinook**), Keith Taut (**Conrad**) & Mark Fitzwater & staff (**Helena**)

... and, many more!

Next Week's Webinar Activated Sludge: part 1 Oxygen Demand and Supply

Thursday, February 25 10:00 - 11:45 AM

Activated Sludge: part 2 Bio-Tiger Model (3/4) Phosphorus Removal (3/11 & 3/18) NC Case Studies (3/25,4/8 & 4/29) Energy Management (4/15 & 4/22)

Next Week's Webinar Activated Sludge: part 1 Oxygen Demand and Supply

Thursday, February 25 10:00 - 11:45 AM

Activated Sludge: part 2 Bio-Tiger Model (3/4) Phosphorus Removal (3/11 & 3/18) NC Case Studies (3/25,4/8 & 4/29) Energy Management (4/15 & 4/22)

Volunteer for Case Study sessions!

Questions Comments Discussion
