Saving Energy at WWTPs with the Bio-Tiger Model

 Energy use for a given-size WWTP may vary significantly depending on:

- Location
- Strength of wastewater
- Level of treatment
- In-plant recovery
- Type of treatment process
- Mode of operation

Relative distribution of energy use at a secondary wastewater treatment* plant:

Relative Distribution of Energy by Process

* Sample 7.5 MGD WWTP

Energy costs account for:

 — 15 to 30% of the operation and maintenance (O&M) budgets at a large WWTP, and

- 30 to 40% of O&M costs at a small WWTP.

Secondary Treatment

 Overall, aeration devices used for the activated sludge system represent the most significant consumers of energy within a WWTP.

- Most aeration systems are classified as:
 - Diffused
 - Dispersed
 - Mechanical

- The ability of any type of equipment to dissolve oxygen within a wastewater treatment system depends on:
 - Diffuser device type
 - Basin geometry
 - Diffuser depth
 - Turbulence
 - Ambient air pressure
 - Temperature
 - Spacing and placement of the aeration devices
 - Diurnal variations in wastewater flow and organic load
 - DO concentration in aerobic reactors

 Having high DO (dissolved oxygen) concentrations within aeration tanks is a waste of energy

• If the system uses blowers, an operator should cut back on blowers or blower output.

 If the facility has coarse bubble diffusers, then a fine-bubble-diffuser system that is more efficient and uses less energy should be considered.

- If a facility has surface aerators, the submergence on the unit may be decreased, which results in:
 - Less DO concentration
 - Less amperage load on the motor (less electrical cost)
- If the liquid level of the basin cannot be adjusted, then:
 - VFDs should be installed on the aerators, or
 - Aerators should automatically start and stop based on time intervals.

- Activated sludge aeration equipment uses large horsepower motors and multiple units such as:
 - Centrifugal-type blowers
 - Positive-displacement blowers
 - High-speed turbine (HST) blowers
 - Surface aerators
- Adding excessive air into the aeration tanks will only result in a waste of energy.

Questions?

 Improving the operation of aeration systems is one of the best ways to reduce the energy costs for wastewater treatment.

- The amount of oxygen required by the activated sludge process depends on:
 - Flow rate
 - Organic waste load
 - Oxidizable N load
 - SRT

 DO probes (sensors), in conjunction with online instrumentation systems perform the critical function of measuring DO levels in the aeration process.

 Typically, oxygen requirements vary throughout the day by a factor of 5 to 7 and can be regulated by automatically controlling systems.

- Air flowrates may be automatically adjusted by:
 - Changing blower speed
 - Adjusting blower inlet guide vanes
 - Operating control vanes
- A key to controlling the activated sludge process (and energy use) is matching oxygen supply to oxygen demand while maintaining a reasonable DO concentration.

 Typically, as wastewater flow and oxygen demand increase in the morning based on the diurnal flow of a WWTP, more aeration is needed.

• Conversely, as flow decreases during the night, the air supply should be reduced.

- A general rule has always been to maintain a DO concentration of 2mg/L in the aeration tanks.
- Once the carbonaceous and nitrogenous oxygen demand have been satisfied, maintaining any DO above 2 mg/L is excessive and a waste of energy.
- A number of treatment facilities maintain a DO concentration of 0.5 to 2.0 mg/L at the end of the aeration basin.

 Fine-bubble diffusers provide higher oxygen-transfer efficiencies as opposed to coarse-bubble diffusers.

 Installing fine-bubble diffusers into aeration basins will reduce the blower capacity needed to satisfy the process air demand.

• Less blower capacity will result in energy savings.

Intermittent Aeration for Energy Conservation in Oxidation Ditch

- Cycle time for on/off operation of aerators may vary
- Process control with DO and ORP monitoring
- When aerator is off, mixing is preferred
- During off period, oxidation ditch becomes anoxic reactor, and nitrate is consumed as bacteria degrade BOD
- ORP data are used to terminate off cycle and start aeration

Change in ORP and DO in On/Off Operation

Factors Affecting On/Off Operation

- Oxidation ditch HRT
- Influent flow rate
- TKN and BOD concentrations
- Number of on/off cycles per day
- Ditch MLSS concentration

Questions?

Bio-Tiger Model Training March 4, 2021

Introduction to the Bio-Tiger Model

Providing Input Data to the Bio-Tiger Model for "Current Conditions"

Activated Sludge Input Data	
Temperature (°C)	20
S _o - Influent BOD ₅ conc (mg/L)	200
V – volume of reactor (mil gal)	1
Q – influent flow rate (mgd)	1
Inert VSS (mg/L)	40
Oxidizable N (mg/L)	35
biomass (VSS/TSS)	0.85
Influent TSS (mg/L)	200
Inert Inorg TSS (mg/L)	20
Effluent TSS (mg/L)	8
RAS TSS (mg/L)	10000
MLSS (mg/L)	3000

f _d	0.1
Y	0.60
K _s (mg/L)	60
k _d at 20°C (1/day)	0.1
k at 20°C (1/day)	8

Aerator Performance Data	
Operating DO concentration (mg/L)	4.5
alpha	0.84
beta	0.92
SOTR, lb O2 / hp-hr	2.7
Temperature (°C)	20
Aeration (hp) being operated	150
Elevation (ft)	200
Aerators operating time (hr/day)	24
Type of aerators (1, 2, or 3)	1
Speed of aerators (%)	100
Energy cost unit (\$/kWh)	0.09

SRT (day)
1
2
4
6
8
10
12
14
16
18
20
22

Analysis

Revert to default

Reviewing Output Data from the Bio-Tiger Model for "Current Conditions"

Approximate Operating Conditions

Total average daily flow rate (mgd)	1.00
Aeration volume in service (mil gal)	1.00
Influent BOD5 concentration (mg/L)	200
Influent BOD5 mass loading (lb/day)	1,668
Sec ww Oxid N load (lb/day)	292
Sec ww TSS load (lb/day)	1,668
F/M ratio	0.089
Solids Retention Time (day)	28.0

MLSS (mg/L)	3,000
MLVSS (mg/L)	2,242
TSS Sludge Production (lb/day)	827
TSS in activated sludge effluent (lb/day)	66.7
Total Oxygen Requirements (lb/day)	3,121
Total Oxygen Req'd W/Denit. (lb/day)	2,687
Total oxygen supplied (lb/day)	3,394
Mixing intensity in the reactor (hp/mil gal)	150
RAS flow rate (mgd)	0.43
RAS recycle percentage (%)	42.9

WAS flow rate (mgd)	0.010
RAS TSS concentration (mg/L)	10,000
Total sludge production (lb/day)	894
Reactor Detention Time (hr)	24.0
VOLR (lb BOD/(thou cu ft-day))	12.48
Effluent CBOD5 (mg/L)	4.0
Effluent TSS (mg/L)	8.0
Effluent Ammonia-N (mg/L)	0.38
Effluent NO3-N (mg/L)	26.0
Effluent NO3-N W/denit (mg/L)	7.8

Actual Aerator Performance	
Field OTR (lb O2 / hp-hr)	0.94
Aerator energy use (kWh/month)	70,200
Energy cost (\$/month)	6,318

Questions?

Providing Input Data for an "Alternate Scenario"

Activated Sludge Input Data for Alternate Scenario	
Temperature (°C)	20
S _o (mg/L)	200
V (mil gal)	1
Q (mgd)	1
Inert VSS (mg/L)	40
Oxidizable N (mg/L)	35
biomass (VSS/TSS)	0.85
Influent TSS (mg/L)	200
Inert Inorg TSS (mg/L)	20
Effluent TSS (mg/L)	8
RAS TSS (mg/L)	10000
MLSS (mg/L)	3000

f _d	0.1
Υ	0.6
K _s (mg/L)	60
k _d at 20°C (1/day)	0.1
k at 20°C (1/day)	8

Aerator Performance Data		
Operating DO concentration (mg/L)	2	
alpha	0.84	
beta	0.92	
SOTR, lb O2 / hp-hr	2.7	-
Temperature (°C)	20	
Aeration (hp) being operated	100	
Elevation (ft)	200	
Aerators operating time (hr/day)	24	
Type of aerators (1, 2, or 3)	1	-
Speed of aerators (%)	85	
Energy cost unit (\$/kWh)	0.09	

Analysis

Revert to default

Reviewing Output Data for an "Alternate Scenario"

Approximate Operating Conditions for "Alternate Scenario"	
Total average daily flow rate (mgd)	1.00
Aeration volume in service (mil gal)	1.00
Influent BOD5 concentration (mg/L)	200
Influent BOD5 mass loading (lb/day)	1,668
Sec ww Oxid N load (lb/day)	292
Sec ww TSS load (lb/day)	1,668
F/M ratio	0.089
Solids Retention Time (day)	28.0

MLSS (mg/L)	3,000
MLVSS (mg/L)	2,242
TSS Sludge Production (lb/day)	827
TSS in activated sludge effluent (lb/day)	66.7
Total Oxygen Requirements (lb/day)	3,121
Total Oxygen Req'd W/Denit. (lb/day)	2,687
Total oxygen supplied (lb/day)	3,185
Mixing intensity in the reactor (hp/mil gal)	85
RAS flow rate (mgd)	0.43
RAS recycle percentage (%)	42.9

WAS flow rate (mgd)	0.010
RAS TSS concentration (mg/L)	10,000
Total sludge production (lb/day)	894
Reactor Detention Time (hr)	24.0
VOLR (lb BOD/(thou cu ft-day))	12.48
Effluent CBOD5 (mg/L)	4.0
Effluent TSS (mg/L)	8.0
Effluent Ammonia-N (mg/L)	0.38
Effluent NO3-N (mg/L)	26.0
Effluent NO3-N W/denit (mg/L)	7.8

Actual Aerator Performance for "Alternate Scenario"	
Field OTR (lb O2 / hp-hr)	1.56
Aerator energy use (kWh/month)	39,780
Energy cost (\$/month)	3,580
Cost savings vs. current conditions (\$/month)	2,738

Questions?

Bio-Tiger Model Case Study

Larry W. Moore Contact Information:

<u>mlarry@bellsouth.net</u> 662-392-4372 (mobile)