What Operators Should Know About Phosphorus Removal, Part 1

Webinar for North Carolina Wastewater Operators March 11, 2021 10:00 - 11:45 AM

Grant Weaver, PE & wastewater operator

G.Weaver@CleanWaterOps.com

Energy & Nutrient Optimization of NC Municipal Wastewater Treatment Plants

Biological Nitrogen Removal, Parts 1&2 Activated Sludge, Parts 1&2

Today: Biological Phosphorus Removal: Part 1

Mar 18: Biological Phosphorus Review, Part 2

Mar 25: North Carolina Case Studies, Part 1 (your plants!) Apr 8: North Carolina Case Studies, Part 2 (your plants!) Apr 15: Energy Management, Part 1 Apr 22: Energy Management, Part 2 Apr 29: North Carolina Case Studies, Part 3 (your plants!)

Why North Carolina operators should care about Phosphorus Removal

From North Carolina's 2019 Nutrient Criteria Development Plan

Development and adoption of nutrient criteria for the following by **2025**:

High Rock Lake / Yadkin River Basin

Albemarle Sound / Chowan River Basin

Central portion of the Cape Fear River

Adoption of nutrient criteria statewide by 2029

Introducing a new way of thinking: **Facility upgrades** aren't the only way to get phosphorus removal... **Empowered operators** achieve amazing results!

Change day-to-day operations to create ideal habitats for bacteria to remove phosphorus

Connecticut Colchester-East Hampton East Haddam Groton New Canaan New Hartford Plainfield North Plainfield Village Suffield Windham

Iowa

Eldora

Kansas

Andover Basehor Chanute Chisholm Creek Derby Eudora Garden Plain Goddard Great Bend Halstead Hiawatha Holton

Kansas, cont'd

Kingman Lansing Lyons Medicine Lodge Miami CO - Bucyrus Miami CO - Walnut Creek Osawatomie Pratt Riley CO - University Park Rose Hill Shawnee CO - Sherwood St. Marys

Spring Hill Topeka North Wellington Wellsville Wichita Plants 1&2 Winfield

Kentucky

Hopkinsville

Massachusetts

Amherst Barnstable Easthampton Massachusetts, cont'd Greenfield Montague Newburyport Northfield Palmer South Deerfield South Hadley Sunderland Upton Westfield

Montana

Bigfork Big Sky Billings Boulder Bozeman Butte Chinook Choteau Colstrip Columbia Falls Conrad Dillon East Helena Forsyth Montana, cont'd

Gallatin Gateway Glendive **Great Falls** Hamilton Hardin Havre Helena Kalispell Laurel Lewistown Libby Lolo Manhattan Miles City Missoula Stevensville Wolf Creek

New Hampshire Keene

South Carolina Greeneville Tennessee

Athens Baileyton Bartlett Chattanooga Collierville Cookeville Cowan Crossville Harriman Humboldt Lafavette LaFollette Livingston Millington Nashville Dry Creek Norris **Oak Ridge**

Texas Nottingham MUD (Houston)

Virginia Strasburg

Wyoming Laramie

Conrad, Montana Population: 2,500 0.5 MGD design flow

Chinook, Montana Population: 1,250 0.5 MGD design flow

Helena, Montana Population: 30,000 5.4 MGD design flow

Grant Weaver g.weaver@cleanwaterops.com

Wastewater Science

DO (Dissolved Oxygen) ORP (Oxidation Reduction Potential)

What Does ORP Tell Us About Our Process?

What Does ORP Tell Us About Our Process?

Grant Weaver g.weaver@cleanwaterops.com

Phosphorus Removal: What an Operator needs to know

ONE. Convert soluble phosphorus to TSS (total suspended solids)...

Biologically

Chemically

TWO. Remove TSS

Biological Phosphorus Removal

Step 1: prepare "dinner"

VFA (volatile fatty acids) production in anaerobic/fermentive conditions

Step 2: "eat"

Bio-P bugs (PAOs, "phosphate accumulating organisms") eat VFAs in anaerobic/fermentive conditions ... temporarily releasing more P into the water

Step 3: "breathe" and grow

Bio-P bugs (PAOs) take in almost all of the soluble P in aerobic conditions as they grow and reproduce

Phosphorus Removal: What an Operator needs to know

orthophosphate = soluble phosphorus

orthophosphate, reactive phosphorus, phosphate, ortho-P, PO₄, PO₄-P, PO₄=, PO₄=-P, PO₄

total-Phosphorus = soluble + particulate phosphorus (non-reactive) phosphorus, total-P, TP, t-P, tP, P

Typical plant, an example

Influent phosphorus: 6 mg/L Effluent phosphorus: 3 mg/L Effluent TSS: 15 mg/L Effluent total-P = particulate P + soluble P

How much effluent phosphorus is soluble and how much is in the TSS?

Approximately 1% of effluent TSS (conventional plant) is phosphorus ...

Effluent P = particulate P + soluble P

Particulate (P in the TSS): 15 mg/L TSS x 0.01 = 0.15 mg/LSoluble = 3 mg/L - 0.15 mg/L with TSS = 2.85 mg/LTotal = 0.15 mg/L (Particulate) + 2.85 mg/L (Soluble) = 3.0 mg/L

Same example ... after SOLUBLE phosphorus is converted to PARTICULATE phosphorus

```
Influent phosphorus: 6 mg/L
Effluent TSS: 15 mg/L
Effluent total-P = particulate P + soluble P
```

Biological Phosphorus removal, when fully optimized, will remove all but 0.05 mg/L of the soluble Phosphorus Chemical Phosphorus removal, the same, all but 0.05 mg/L

Either way, only **0.05 mg/L** of soluble Phosphorus remains

Meanwhile, what used to be soluble Phosphorus is now part of the MLSS (mixed liquor suspended solids) ...

And, as the bio-P bugs take in phosphorus, the percentage of the MLSS and TSS that is Phosphorus increases from 1% to as high as 5%

Effluent P = soluble P + particulate

Soluble = **0.05** mg/L

Particulate (P in the TSS): 15 mg/L TSS x 5% = 0.75 mg/L

Total = 0.05 mg/L (Soluble-P) + 0.75 mg/L (Particulate-P) = 0.80 mg/L

TSS Removal Requirements

Since all but 0.05 mg/L of the soluble Phosphorus can be converted to TSS Phosphorus (Biologically and/or Chemically)

And, because approximately 5% of Effluent TSS is Phosphorus

... To meet a total-P limit, the effluent TSS needs to be kept to the max TSS number shown in the table.

P Limit	max TSS
0.1	1
0.2	3
0.3	5
0.4	7
0.5	9
0.6	11
0.7	13
0.8	15
0.9	17
1.0	19
1.1	21
1.2	23
1.3	25
1.4	27
1.5	29

Grant Weaver g.weaver@cleanwaterops.com

thermidpercentation met

Technology!

Biological Phosphorus Removal: Mainstream Flow Fermentation Processes

Bio-P Removal: Mainstream Fermentation Process

Energized PAO bacteria take PO_4 out of solution.

In Aeration Tank ...

Energized PAO bacteria take PO₄ out of solution.

Grant Weaver g.weaver@cleanwaterops.com

Biological Phosphorus Removal: Combined Sidestream & Mainstream Fermentation

Optimizing Bio-P Removal: Mainstream or Sidestream Fermentation

Anaerobic Tank

2 hour HRT (hydraulic retention time)*
ORP of -200 mV*
25 times as much BOD as influent ortho-P*
Ortho-P release (3 times influent ortho-P)*

Aeration Tank

DO of 2.0 mg/L ORP of +150 mV pH of 7.0+* Ortho-P concentration of 0.05 mg/L*

*Approximate: Every Plant is Different

Grant Weaver g.weaver@cleanwaterops.com

Troubleshooting Biological Phosphorus removal in Plants Designed for EBPR (enhanced biological phosphorus removal)

Less than 3x ortho-P leaving Anaerobic Tank

... turn off mixer(s)

Grant Weaver g.weaver@cleanwaterops.com

3x ortho-P leaving Anaerobic Tank but high effluent P

Grant Weaver g.weaver@cleanwaterops.com

Getting creative ...

Biological Phosphorus removal from plants not designed as EBPR (enhanced biological phosphorus removal) facilities

Grant Weaver g.weaver@cleanwaterops.com

Acknowledgements

US EPA Brendan Held & Craig Hesterlee

NC DEQ

Terry Albrecht, Corey Basinger & Ron Haynes

U MEMPHIS

Larry Moore, PhD

MONTANA

Paul Lavigne (retired), Pete Boettcher, Josh Vial & Ryan Weiss (**MDEQ**), Eric Miller & Cory Fox (**Chinook**), Keith Taut (**Conrad**) & Mark Fitzwater and staff (**Helena**)

TENNESSEE

Karina Bynum, Sherry Wang, George Garden, Jen Dodd (**TDEC**), Brett Ward (**UT-MTAS**), Dewayne Culpepper (**TAUD**), Tony Wilkerson & Doug Snelson (**Norris**), Ronnie Kelly, Tom Graham & John Buford (**Cookeville**)

... and, many more!

Next Week's Webinar Phosphorus Removal: part 2

Thursday, March 18 10:00 - 11:45 AM

NC Case Studies (3/25 & 4/8) *Energy Management* (4/15 & 4/22) *NC Case Studies* (4/29)

Grant Weaver g.weaver@cleanwaterops.com

Questions Comments Discussion