### Energy Management at Municipal WWTPs

Session 2 April 22, 2021

Ron Haynes, PE & WWTP Operator Terry Albrecht, PE, CEM Waste Reduction Partners



# Energy Management Target



Reduce Energy use per Million gallons wastewater and potentially provide better treatment

Discover and use lower cost energy options



### Introduction

Purpose – Increase awareness of energy use and potential for reducing plant operating expenses for wastewater operators

Remember our Drivers from Session 1:

- Budget considerations
- Water-Energy Nexus
- Importance of Energy Efficiency
- Continuous Improvement
- Municipal Sustainability Initiatives, ISO 14001

### WWTP Energy Management Sequence

- 1. Organize an Energy Management Program
- 2. Discover your Plant Baseline Energy Use
- 3. Plant(s) Evaluation
- 4. Energy Savings Possibilities
- 5. Start with No-cost and Low-cost Items
- 6. Get involved in setting Priorities for Higher Cost Potentials
- 7. Be aware of Planning for capital improvement
- 8. Assist in Tracking and Reporting Results





#### <u>Agenda – Two Sessions</u> Energy Management Training

**Session 1**: Organize an Energy Management Program **Energy Vocabulary Literacy** Utility Billing – Understanding your billing Baseline Data & Tracking (at utility billing level) Benchmarking Plant Survey & Evaluations: Session 2: Common BMPs for Energy Management Renewables OWASA: Energy Management Case Example – Mary Tiger

Resources for Taking the Next Step





#### Energy Savings Possibilities

- Identifying ways to use less energy or reduce costs using lower cost energy
- Stay informed about energy management by reading, study, participating in continuing education relative to energy



Typical Energy Balance – 1 mgd plant

Source: WEF MoP 32, 2009

### **Energy Savings Possibilities**

- Capital program or equipment replacement example replace electric motors with high Eff
- Process change change regular aeration to sequence batch reactor
- Operational change Use fewer units if hydraulic conditions allow
- Automation or controls Rely on ORP instead of DO for oxidation, Add process control
- Maintenance improvements Consider a rewinding program for motors
- Business measures train operators, make energy management a priority



## Best Management Practices are available for reducing energy use and costs of operation

#### **Energy Savings Categories**

- Organizational Energy Management
- Treatment Process Energy Management
- Building Systems Energy Management
- Renewable Distributed Generation











### Organizational Divert Flexible Use to Off-Peak Times

Plant Example: 40% of the electric bill could be monthly peak Demand charge (kW)

60% is for energy consumption in kilowatt hours (kWh) for the month.

The off-peak energy charge (\$/kWh) is 20% less during off-peak hours verse on-peak times.

Return clarifier or basin contents to head of plant during off-peak time so that increase pumping is at lower cost :

Saving potential: 20% of the pumping energy charges.



### Organizational: Motor Management & Rewind Standards

- Establish rewind quality standards with vendors
- Vendors should follow ANSI/EASA standard AR100-2015 Recommended Practices
- strive to have zero to less than 0.5 percent efficiency losses for rewinds of large motor (=>50 HP),
- Vendor certified to Proven Efficiency Verification (PEV) program by Advanced Energy.org (National experts right in Raleigh!).

-Don't rewind less than ~ 50 HP

-Procure only NEMA Premium Efficiency and

-Consider Super Premium Efficiency (IE4) Induction Motors (1 -2 % efficiency gain over Premium Efficiency)



### Organizational: Motor Operating Costs Examples





### Organizational: Energy-Use Monitoring & Control on SCADA



- How are your monitoring current energy use on SCADA?
- Look for opportunities to manage energy use on SCADA monitored and controlled equipment.
- Energy kW Demand Management and kWh monitoring should be goal for SCADA



Evaluate some of the changes suggested in earlier sessions covering nitrification and phosphorus removal

# *Treatment:* Aeration Upgrade with Duke Rebates

<u>Project</u>: Coarse to Fine Bubble Diffusers on Aeration Basin

Automate DO control with throttle control on primary blower

Project Cost: \$1.4 Million

Duke Energy Smart Saver "Custom" Incentive: \$340,000

<u>Savings</u>: 4 million kWh and 450 kW Annual Electric Cost Savings: \$280,000



Consider installing or using existing VFD to match process demand

#### Energy use with decreased speed for centrifugal pumps

Flow is proportional to the pump's speed but energy use is proportional to the cube root of the speed. This results in a reduction of approximately 15% energy use for a 5% reduction in flow

| $V_2 = V_1 x (R_2 / R_1)$   | volume | gallons or gallons per time                                  |
|-----------------------------|--------|--------------------------------------------------------------|
| $H_2 = H_1 x (R_2 / R_1)^2$ | head   | ft of water typical                                          |
| $P_2 = P_1 x (R_2/R_1)^3$   | power  | Horsepower (convert to kW, $1 \text{ hp} = 0.746 \text{ kW}$ |



| Assume H - ft    | 50                            |              | Jackson      | Crk Efflue    | ent Pum   | ps 2 units    |                                                             |                       |                      |                       |             |                   |                |
|------------------|-------------------------------|--------------|--------------|---------------|-----------|---------------|-------------------------------------------------------------|-----------------------|----------------------|-----------------------|-------------|-------------------|----------------|
| whp = HQ / 3960  | )                             |              | Pumps - 1    | 00 HP         | From Desi | gn data >     |                                                             | 6,000,000 gal per day | 24 hr                | Design was appr       | ox>         | Permit -<br>5208  | 7.5 MGL<br>gpm |
| Water Horsepower |                               |              |              |               |           |               |                                                             | 15.8 hr/day at assu   | imed WH calc pumpi   | ing volume            |             |                   |                |
| Eff WHP          | ff WHP 80 Electric Rate \$/kw |              | \$0.061      |               |           | NOTE:         | For VFD change, horsepower is proportional to cube of speed |                       |                      |                       |             |                   |                |
| (G) - gal/min    | 6336                          |              |              |               |           |               |                                                             |                       | volume is directly p | proportional to speed | . ·         | Gorman-Rupp       | Pumps          |
|                  |                               |              | Assumed h    | hr/yr         | 5,761     | KW/H          | 0.746                                                       |                       |                      |                       |             | Engineering Da    | ata            |
|                  |                               |              | 2 pumps      |               |           |               |                                                             |                       |                      |                       |             |                   |                |
|                  |                               |              | Motor Load   |               | 90%       |               |                                                             |                       |                      |                       | extra       |                   |                |
|                  |                               |              |              |               |           |               |                                                             |                       |                      |                       | gpm         | hours             | hours/yr       |
|                  |                               |              | Motor Effi   | ciency        | 91%       | Motor HP      | 100                                                         |                       |                      | No VFD 100%           | 6336        | 5760.7            | N/A            |
|                  |                               |              |              |               |           |               |                                                             |                       |                      | at 95% of max         | 6019        | 6064              | 303            |
|                  |                               |              |              |               |           | Motor         | VFD                                                         | Annual costs          |                      |                       |             |                   |                |
| KW hr            | KW                            |              | \$/hr        | Motor HP      |           | efficiency    | Speed                                                       |                       |                      | at 90% of max         | 5702        | 6401              | 640            |
| Annual           |                               |              |              | Load          |           |               | Reduction                                                   |                       |                      |                       |             |                   |                |
|                  |                               | VFD factor   |              |               |           |               |                                                             |                       |                      | at 85% of max         | 5386        | 6777              | 1017           |
| 425028           | 73.78                         |              | \$4.50       | 90            |           | 919           | 6 0%                                                        | \$25,926.71           | Ú.                   |                       |             |                   |                |
|                  |                               |              |              |               |           |               |                                                             |                       | Note:                | Actual annual co      | st for 2019 |                   |                |
|                  |                               |              |              |               |           |               |                                                             |                       |                      | is in the SRU tota    | al billing  |                   |                |
| 396665           | 65.41                         | 0.857375     | \$3.99       | 77.2          |           | 889           | 6 5%                                                        | \$24,196.55           | 12                   |                       |             |                   |                |
|                  |                               |              |              |               |           |               |                                                             |                       |                      |                       |             | avg               |                |
| 356009           | 55.62                         | 0.729        | \$3.39       | 65.6          |           | 889           | 6 10%                                                       | \$21,716.57           |                      |                       |             | hr/day            | 18.57          |
|                  |                               |              |              |               |           |               |                                                             |                       |                      |                       |             | at 15%            |                |
|                  |                               |              |              |               |           |               |                                                             |                       |                      |                       |             | reduction         |                |
| 317552           | 46.85                         | 0.614125     | \$2.86       | 55.3          |           | 889           | 6 15%                                                       | \$19,370.64           | 6                    |                       |             |                   |                |
|                  |                               |              |              |               |           |               |                                                             | \$7.470.09            | Savinge              | Dor your              | At 5% rod   |                   |                |
| 40655 KM         | f saved :                     | annually for | 5% aug cor   | and reduction |           |               |                                                             | 52,475.56             | for aver             | age rate              | with VED    |                   |                |
| 40055 KW         | saveu a                       | annuany for  | The gall she | eeu reductio  | Pump affi | nity laws use | for oneratio                                                | an with VED           | IOI aver             | agenate               | is a 1      | 10% annual cau    | ings           |
|                  |                               |              |              |               | a mp am   | and may get   | a los operacio                                              |                       |                      |                       | 13 0 1      | 10/0 dillingi 204 | 11B3           |

#### Energy use with decreased speed for centrifugal pumps







Hours operation and costs with decreased speed for centrifugal pumps



Waste Reduction Partners

Slow and Steady wins the race









### Building Systems: LED Lighting Upgrades

#### 75% wattage reduction possible

Lab/Office: 106 Watt 2'x4' fluorescent troffer to 26 Watt LED retrofit kit

0.08 kW saved x 3000 hours x \$0.089 per kWh = \$21 savings per fixture per year (\$40 Panel Duke rebate)

High Bay Lighting: 440 Watt Metal Halide to a 150 Watt LED

0.2 kW saved x 5000 hours/year x \$0.089 per kWh = \$89 savings per fixture per year (\$150 Duke rebate)

#### 50% wattage reduction typical

**Strip Fixtures Work Space**: 32 W 4 ft. fluorescent lamp to 15 W LED 0.017 kW saved x 3000 hours x \$0.089 per kWh = \$5 per lamp per year (\$3 Duke rebate)

LED pricing can make simple payback in 2 to 5 years, less with rebates or higher use



### *Building Systems:* Unit Electric Heaters

Commonly 5 KW or even 10 KW Manual controlled How many unit heaters do you have?

#### Cost to run one heater 24 hours:

5 kW x 24 hours x \$0.089 /kWh = \$10.68 (\$320/month) 10 kW x 24 hours x \$0.089/kWh= \$21.36 (\$640/month)

- Consider electric radiant (better w/ bay doors and high bay areas)
- Consider natural gas radiant heaters
- Consider the need for use to avoid freeze impacts
- Consider setting at 50 55 degrees



#### Unit Heater Impacts

Gravity Supplied water plant seasonal e nergy use

25 unitary electric fan heaters











### Renewable Distributed Generation Town of Taylorsville: Solar Peak Shaving



### *Renewables:* Anaerobic Digestion: "Renewable Natural Gas" Opportunities



Anaerobic Digesters



**Floating Roof** 



Heater – Natural gas fired



### Microbial Fuel Cell











### Energy Management at OWASA

#### April 22, 2021





Carrboro-Chapel Hill's not-for-profit public service agency delivering high quality water, reclaimed water, and wastewater services.



#### WASTEWATER MANAGEMENT

Mason Farm Wastewater Treatment Plant

**Reclaimed Water** 



### **Energy Management Plan Achievements**



\*Since 2010 Baseline

Mason Farm WWTP

Capacity: 14.5 MGD Annual Average: 8 MGD



### Energy Use at Mason Farm WWTP



### Energy Efficiency Upgrade: Aeration and Aeration Basin Mixing Process Equipment

### **Old System**



#### Four NSL and Six East Aeration Cells

- Jet Mixing / Aeration Pod(s)
- Up to 1000 scfm / pod
- I4 HP pump(s) continuous operation

#### Six West Aeration Cells

- Jet Mixing / Aeration Header
- Up to 3000 scfm / header
- Two 50 HP pumps continuous operation

#### Two Aeration Cells – 5A / 5B

- Jet Mixing / Aeration Header
- Up to 1500 scfm / header
- 50 HP pump continuous operation

#### Multistage Centrifugal Blowers

- Three 3600 scfm 150 HP blowers
- Three 5600 scfm 250 HP blowers
- Use between 500-650 HP depending on time of the year





### Energy Efficiency Upgrade: Aeration and Aeration Basin Mixing Process Equipment

#### **New System**

#### Four NSL Cells

- High Efficiency Mixer < 5 HP
- Aluminum Covers and Odor Control

#### Twelve Aeration Basin Cells

- Fine Bubble Diffusers 2000 or 3000 scfm
- High Efficiency Mixer < 5HP (standby)</li>
- Aluminum Covers and Odor Control (6 cells)

#### Two Aeration Cells – 5A / 5B

- Fine Bubble Diffusers 1500 scfm
- Four High Efficiency Mixers < 3HP (standby)</li>
- High Efficiency Blowers
  - Four 5000 scfm 250 HP blowers
  - One 5600 scfm 250 HP Multistage (backup)
- New SS Air Header, 3 Carbon Scrubbers





### **New Aeration System: Financial Impact**

- Capital Costs: \$8 million
  - \$6.56 million, 20-Year, No-Interest Loan: NC Clean Water State Revolving Fund (Saved an estimated \$1.7 million over lifetime of loan)
  - Duke Energy Customer SmartSaver Incentive: \$168,000
- Estimated Energy Savings: \$220,000/year
- Realized Energy Savings: \$275,000/year



### **Pump Station Evaluations**

#### **Recommendations included:**

- Speed adjustments
- Operating set points: (E.g. wet well levels)
- Simultaneous operation
- Pump replacement
- System modifications (e.g. hydropneumatic tanks, piping)



### **Energy-Minded Decision Making**

- Extend backwash filter cycles and reduce air scouring frequency
- Optimize odor control system
- Online ORP/nitrate monitoring
- Phased HVAC upgrades
- Reduce I&I
- Pump station monitoring
- WWTP Master Plan



Energy Management Pyramid



Renewable Energy

#### **Energy Efficiency**

#### Energy Conservation/Optimization

### **Solar Leasing**

- Public-private partnership
- 25-year term
- OWASA's lease payment is less than energy savings
- Down-payment covered by Duke Energy rebate
- System owned and operated with private partner



### Progress Towards Goal: Solar Photovoltaics



kWh/year

# Thank you



Mary Tiger mtiger@owasa.org



### **OWASA's Energy Management Program**

Systematic identification, evaluation and pursuit of energy management opportunities

Energy and water conservation & process optimization

Energy-minded decision making

Investment in cost-effective energy management projects

# Objective 2: Reduce use of purchased natural gas by 5% by the end of CY2020 compared to the CY2010 baseline.

Purchased Natural Gas, by Functional Area (2010 - 2020)





### Resources to take the next step

- Duke Energy: Business Advisor Advisors and Large Account Rep (
- Dominion Energy: RNG Projects (Lee McElrath, Dominion Energy NC 828-230-7118)
- Your Local COOP/Municipal Utility Rep
- Your Peer Networks: PWOC-WEF
- Your Consulting Engineer
- State Grant Sources: Green Project Reserve
- Advanced Energy: Kitt Butler, <u>kbutler@advancedenergy.org</u>
- Energy Efficiency Assessment Providers
  - Waste Reduction Partners (serving all of NC)
    - Russ Jordan, Energy Manager, rjordan@wrpnc.org, (828) 251-7477
  - NC Rural Water Association (serving populations <10,000)
    - Natalie Narron, Energy Efficiency Circuit Rider, <u>natalienarron@ncrwa.org</u>, (336) 887-0741
- EPA: Brendan Held & Team





#### **Business Energy Advisors Carolinas**





#### Waste Reduction Partners – Energy Assessments

- Land of Sky's WRP program provides no-cost energy efficiency and waste assessments.
- <u>Clients:</u> Any water/wastewater plant, business or institution in NC.
- <u>The Team</u>: 40 staff and volunteer engineers (statewide)
- Past energy work with: Asheville Water Resources Department, Town of Salisbury, Town of Boone, Cape Fear Public Utility Authority, Kerr Lake, and others
- <u>Results:</u> –past 5 years: 275 clients served, \$16.4 million in utility cost savings, 130,000 MWh saved
- Initiate a Project: WasteReductionPartners.org or Russ Jordan rjordan@wrpnc.org









#### Thanks to following utilities for sharing demonstration information and photos.



Waste Reduction Partners

Acknowledgements



