Energy & Nutrient Optimization of North North Carolina wastewater treatment plants: "Wastewater Excellence"

1 -1 -1 -1

Webinar for North Carolina Wastewater Operators April 29, 2021 10:00 - 11:45 AM

Brendan Held Held.Brendan@epa.gov

Terry Albrecht terry.albrecht@ncdenr.gov

Larry Moore, PhD mlarry@bellsouth.net

Ron Haynes rhaynes@wrpnc.org

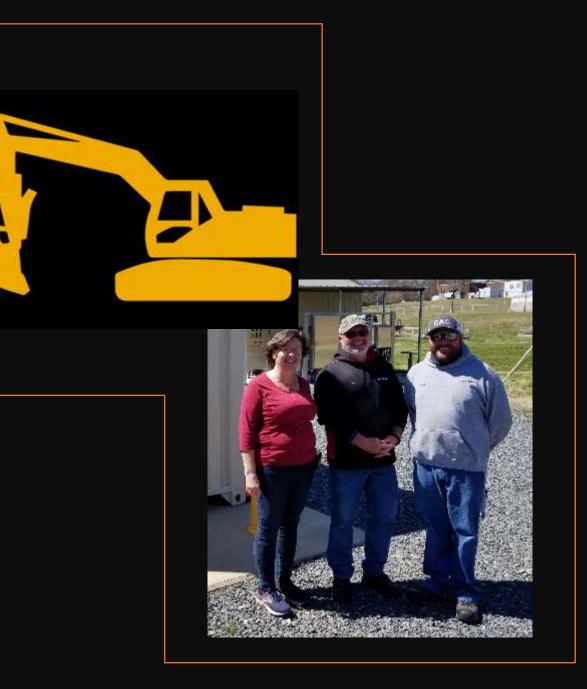
Grant Weaver, PE & wastewater operator G.Weaver@CleanWaterOps.com

Webinar Housekeeping

- Technical Difficulties?
- Audio Issues? Use your Phone
 - +1 (415) 655-0060
 Access Code: 889-604-561
 ID: 944-909-523
- Resource Slides and Recordings
- To Ask Questions

 $\,\circ\,$ Use the Questions Tool on your GoToWebinar Control Panel

• Other issues? Terry Albrecht (828) 707-2834, <u>talbrecht@wrpnc.org</u>


Energy & Nutrient Optimization of NC Municipal Wastewater Treatment Plants

Biological Nitrogen Removal, Parts 1&2 Activated Sludge, Parts 1&2 Biological Phosphorus Review, Parts 1&2 North Carolina Case Studies, Parts 1&2 Energy Management, Parts 1&2

Today: Wastewater Excellence in North Carolina an Overview

Introducing a new way of thinking: **Facility upgrades** aren't the only way to get nutrient removal...

Empowered operators achieve amazing results!

Lessons Learned

Biological Nitrogen Removal: 10 mg/L at many (most) activated sludge wwtps

Biological Phosphorus Removal: 1.0 mg/L at many (most) activated sludge wwtps


Many (most) wwtps can reduce their electric bill

Tools are available:

- Bio-Tiger Model
- Nutrient and Energy Assessment Tool
- Nutrient Removal Study Guides
- Course website
- ...and much more

It takes knowledge and courage to transition from PERMIT COMPLIANCE to WASTEWATER EXCELLENCE

691

Biological Nitrogen Removal: Convert LIQUID to GAS ...

BOD and TSS Removal: Convert LIQUID to SOLID ...

-03

-600

-500

400

300

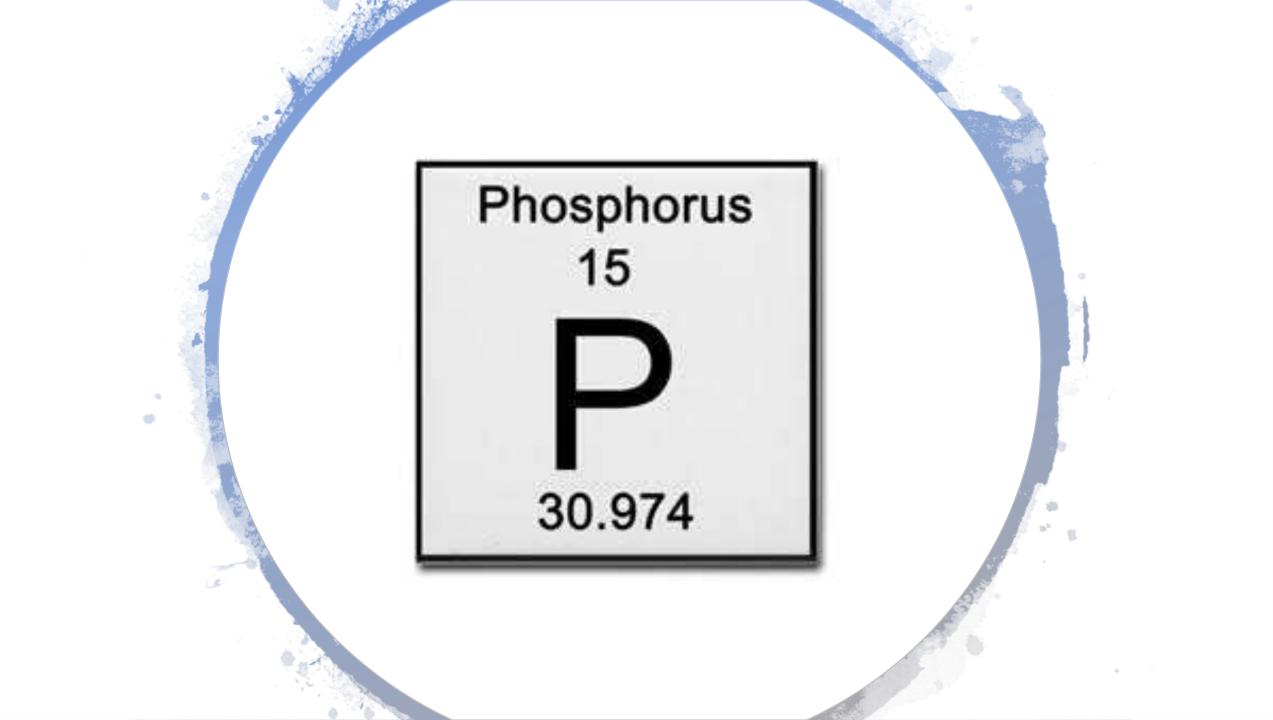
-200

100

50

40

30

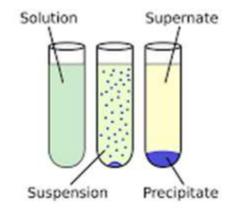

20-

Step 1: Convert Ammonia (NH₄) to Nitrate (NO₃)

Oxygen-rich Aerobic Process Don't need BOD for bacteria to grow Bacteria are sensitive to pH and temperature

Step 2: Convert Nitrate (NO₃) to Nitrogen Gas (N_2)

Oxygen-poor Anoxic Process Do need BOD for bacteria to grow Bacteria are hardy


Phosphorus Removal: What an Operator needs to know

ONE. Convert soluble phosphorus to TSS (total suspended solids)...

Biologically

Chemically

TWO. Remove TSS

Biological Phosphorus Removal

Step 1: prepare "dinner"

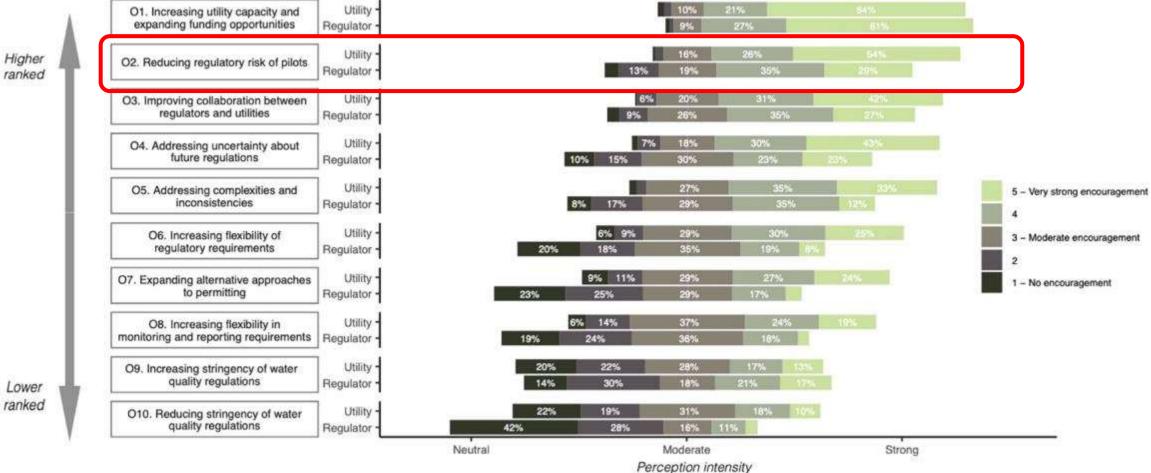
VFA (volatile fatty acids) production in anaerobic/fermentive conditions

Step 2: "eat"

Bio-P bugs (PAOs, "phosphate accumulating organisms") eat VFAs in anaerobic/fermentive conditions ... temporarily releasing more P into the water

Step 3: "breathe" and grow

Bio-P bugs (PAOs) take in almost all of the soluble P in aerobic conditions as they grow and reproduce


First steps for nutrient optimization

- Expand your toolkit for process control sampling
 - Test strips (ammonia, nitrite/nitrate, alkalinity)
 - Spectrophotometer (ammonia, nitrite/nitrate, orthophosphate)
 - Portable DO / ORP meters
 - In-line DO meter
 - Additional in-line instruments (ammonia, orthophosphate ...)
- Manage Regulatory Risk
 - Communication
 - Documentation
 - Ask for help

More on Regulatory Risk...

Perceived opportunities

Higher ranked

From Cantor, et al (2021), "Regulators and Utility Managers Agree about Barriers and Opportunities for Innovation in the Municipal Wastewater Sector"

The landscape is changing...

- Some states are requiring optimization as an intermediate step toward nutrient limits
- Other states are offering "safe harbor" letters of support after review of optimization plans, outside of the permitting process
- <u>Any</u> state will require advance communication and strong documentation throughout

Energy Management at Municipal WWTPs

Session Topics:

Organize an Energy Management Program

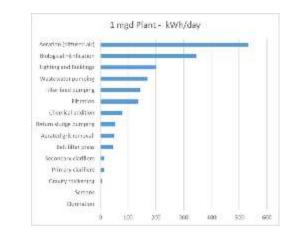
Energy Vocabulary Literacy

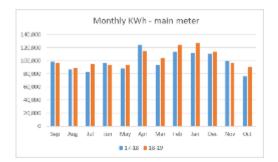
Utility Billing – Understanding your billing

Baseline Data & Tracking (at utility billing level)

Benchmarking

Plant Survey & Evaluations:


Common BMPs for Energy Management


Renewables

OWASA: Energy Management Case Example – Mary Tiger Resources for Taking the Next Step

Key Takeaways

- Get Familiar with Utility Billing
- Start Tracking Energy Use and Cost Monthly – Make this a KPI!
- Conduct a Plant Assessment for an **Energy Balance**
- Reach out to Available Resources for Help: Utility, WRP, RWA, Others
- ID Energy Saving Opportunities Start with no & low cost
- Make your plan!

DUKE ENERGY.
CITY OF SALISBURY 1915 GRUBB FERRY RD

Ser

go to http:/	/www.du	ke-energy	.com/north	carolina/	billing/back-of bill.asp
and the second second					Charles and the second s

Account Number	ACCREDING TO A
Verification Code	3
Bill Date	03/19/2021
Current Charges Past Due After	04/05/2021

rvice From	FEB 16 to M/	AR 18 (30 Days)	Your next s
PICT INC	us nut	DAVIDANTS	NEWC

schoduled meter reading will occur between APR 20 and APR 23

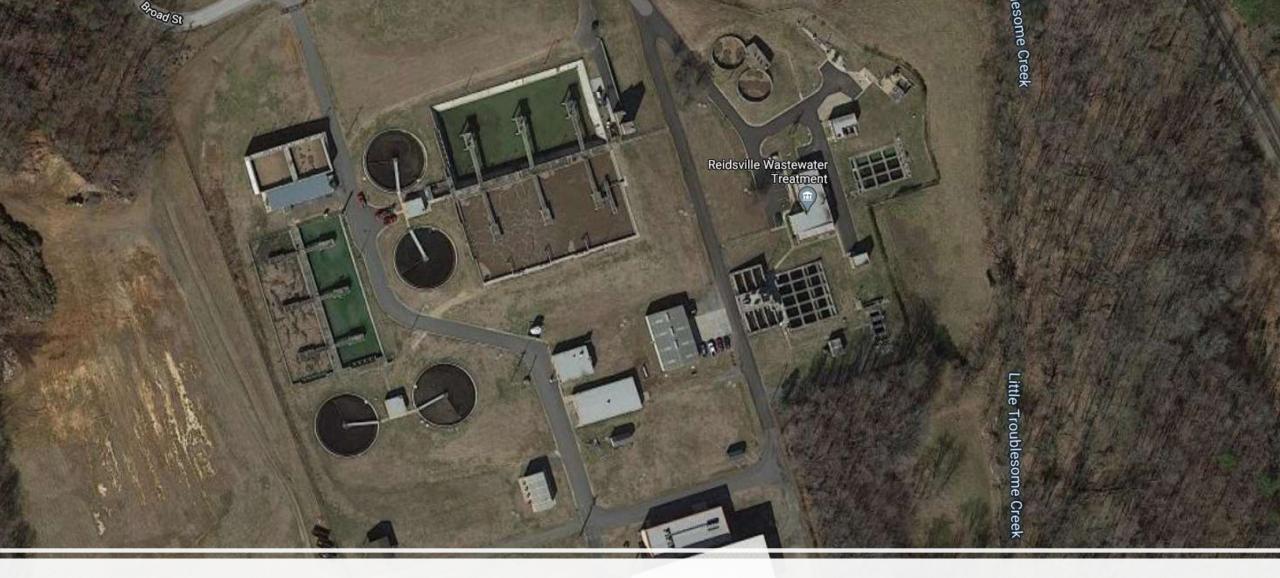
CONTRACTOR NOT THE	IOUS BILL-	PAYM (Contract French Barrier	NEW CHARGES (+)	ADJUSTMENTS (+ OR -)	AMOUNT QUE
\$	11,149.24	\$1	1,149.24	\$11,623.02	\$0.00	\$11,623.02
METER NUMBER	METER REA PREVIOUS	DINGS: PRESENT	MULTI- PLIER	TOTAL USAGE	RATE SCHEDULE DESCRIPTION	AMOUNT
910567	0.00 0.00 5621,975 43114,385	1.32 1.32 5786.727 43859.925	300 300 300 300	396 KW 396 KW 396 KW 49,426 KWH 174,236 KWH	OPT-V TOU Secondary S Customer Charge On-Peak Actual Demand On-Peak Silling Demand On-Peak Actual Domand On-Peak Energy (Wintor) Off-Peak Energy Renewable Energy Rider Sales Tax	(Winter) 3,815.97 2,786.34 4,224.35
					Amount Due	11,623.02

Resources to take the next step

- Duke Energy: Business Energy Advisors and Large Account Reps
- Dominion Energy: RNG Projects (Lee McElrath, Dominion Energy, NC 828-230-7118)
- Your Local COOP/Municipal Utility Reps
- Your Peer Networks: PWOC-WEF
- Your Consulting Engineers
- State Clean Water Grant Sources: Green Project Reserve
- Advanced Energy: Kitt Butler, kbutler@advancedenergy.org
- Energy Efficiency Assessment Providers:
 - Waste Reduction Partners (serving all of NC)
 - Russ Jordan, Energy Manager, rjordan@wrpnc.org, (828) 251-7477
 - NC Rural Water Association (serving populations <10,000)
 - Natalie Narron, Energy Efficiency Circuit Rider, natalienarron@ncrwa.org, (336) 887-0741
- EPA: Brendan Held & Team Held.Brendan@EPA.gov

Waste Reduction Partners – Energy Assessments

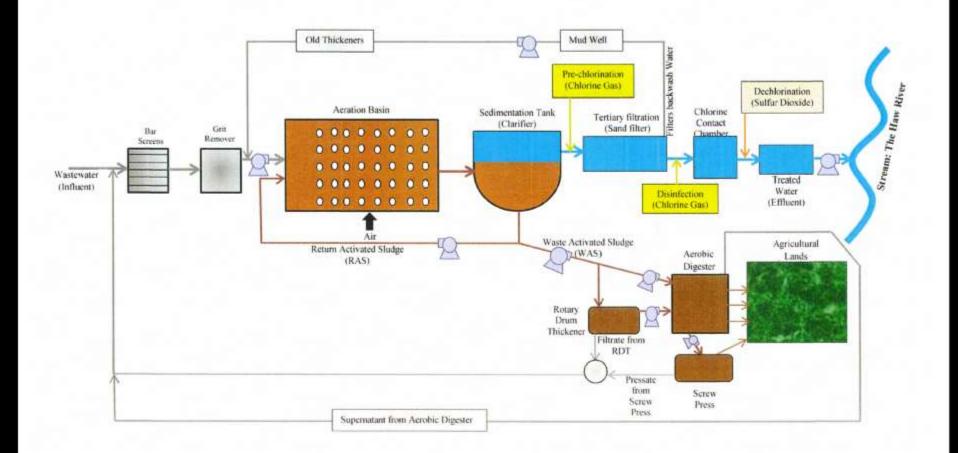
- Land of Sky's WRP program provides no-cost energy efficiency and waste assessments.
- <u>Clients:</u> Any water/wastewater plant, business or institution in NC.
- <u>The Team</u>: 40 staff and volunteer engineers (statewide)
- Past energy work with: Asheville Water Resources Department, Town of Salisbury, Town of Boone, Cape Fear Public Utility Authority, Kerr Lake, and others
- <u>Results:</u> –past 5 years: 275 clients served, \$16.4 million in utility cost savings, 130,000 MWh saved
- Initiate a Project: WasteReductionPartners.org or Russ Jordan rjordan@wrpnc.org



Pilot Plant Updates

Reidsville, North Carolina

Population: 14,000


7.5 MGD design flow

Google

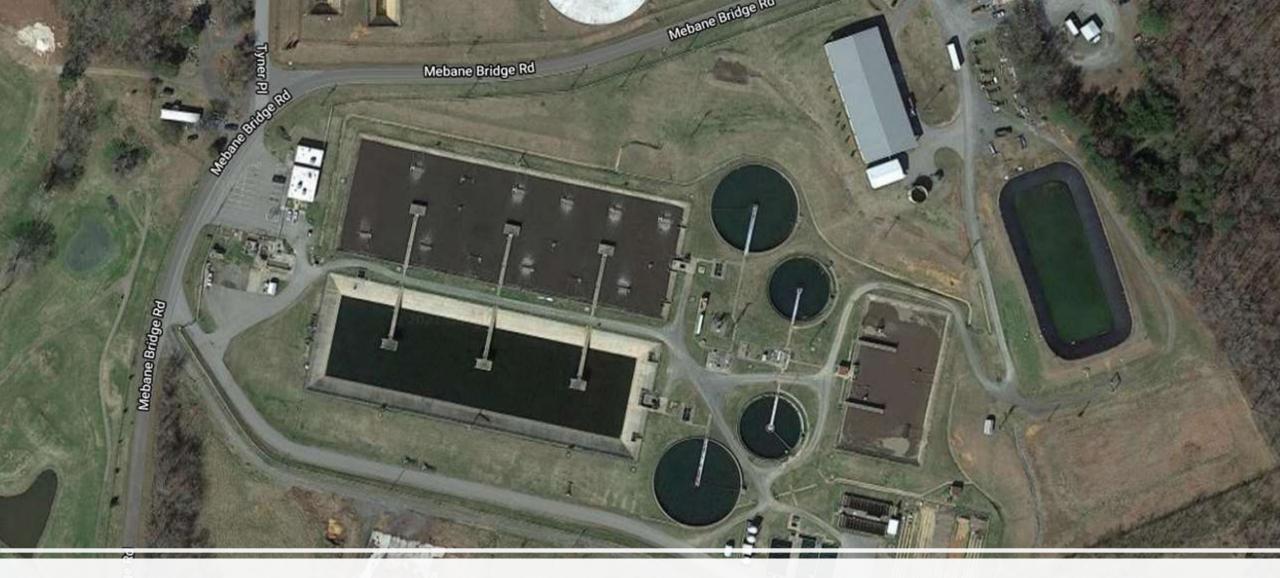
Waste Water Treatment Plant Treatment Process Flow Diagram

Section 2: Treatment Process Flow Diagram

Reidsville's Action Plan

Phosphorus:

- Already achieving excellent removal, often < 1.0 mg/L
- No additional steps at this time


Nitrogen:

- Effluent currently ~10 mg/L
- After diffuser repairs, consider turning off blowers for 1 hour each morning
- Monitor NH3 and NO3
- Consider additional 1 hour off cycle in the afternoon
- Continue monitoring performance
- Consider additional off cycles up to four 90-min cycles per day

Scott Bryan sbryan@ci.Reidsville.nc.us

Eden, North Carolina Population: 15,000 13.5 MGD design flow

S

Google

27

Eden's Action Plan

Phosphorus:

- Already achieving excellent removal, partially due to alum sludge from WTP
- No additional steps at this time

Nitrogen:

- Effluent currently ~10-12 mg/L
- Continuing cycling off 6 of 12 aerators during peak billing hours
- Increase # of "off" aerators to 9, starting 1 hr/d, increase weekly
- Process control sampling for effluent NH3 and NO3
- Goal is 8 mg/L TN or less

Assumptions:

- Alum sludge from WTP means higher than normal inert solids
- Average DO concentration throughout basin is less than DO measured at effluent
- Oxygen supply:
 - 12 x 20 HP aerators running for 16.25 hrs/d
 - 6 x 20 HP aerators running for 7.75 hrs/d
 - This is 4830 HP-hr of aeration per day, so, 201 HP over 24 hrs.
- Plant is fully nitrifying, partially denitrifying
- WAS TSS = RAS TSS

- Assumption:
 - Alum sludge from WTP means higher than normal inert solids

Activated Sludge Input Data		
Temperature (°C)	25	
S _o (mg/L)	160	
V (mil gal)	7	
Q (mgd)	3.5	
Inert VSS (mg/L)	30	
Oxidizable N (mg/L)	20	
biomass (VSS/TSS)	0.85	
Influent TSS (mg/L)	200	
Inert Inorg TSS (mg/L)	40	
Effluent TSS (mg/L)	4	
RAS TSS (mg/L)	4500	

- Assumptions:
 - Average DO concentration throughout basin is less than DO measured at effluent
 - Oxygen supply:
 - 12 x 20 HP aerators running for 16.25 hrs/d
 - 6 x 20 HP aerators running for 7.75 hrs/d
 - This is 4830 HP-hr of aeration per day, so, 201 HP over 24 hrs.

Aerator Performance Data			
Operating DO concentration (mg/L)	1.5		
alpha	0.84		
beta	0.92		
SOTR, lb O2 / hp-hr	2.7		
Temperature (°C)	25		
Aeration (hp) being operated	201		
Elevation (ft)	600		
Aerators operating time (hr/day)	24		
Type of aerators (1, 2, or 3)	1		
Speed of aerators (%)	100		
Energy cost unit (\$/kWh)	0.05		

Assumptions:

- Plant is fully nitrifying, partially denitrifying
- WAS TSS = RAS TSS

Analysis:

- O2 supply is within range
- Projected NO3 (w/o any nitrification) is higher than actual NO3
- Will not likely reduce NO3 to 4 mg/L; lower bound of O2 demand unrealistic
- WAS Q ~50% lower than expected needs further review

Total average daily flow rate (mgd)	3.50
Aeration volume in service (mil gal)	7.00
Influent BOD5 concentration (mg/L)	160
Influent BOD5 mass loading (lb/day)	4,670
Sec ww Oxid N load (lb/day)	584
Sec ww TSS load (lb/day)	5,838
F/M ratio	0.066
Solids Retention Time (day)	46.0
MLSS (mg/L)	2,219
MLVSS (mg/L)	1,208
TSS Sludge Production (lb/day)	2,700
TSS in activated sludge effluent (lb/day)	116.8
Total Oxygen Requirements (lb/day)	8,313
Total Oxygen Req'd W/Denit. (lb/day)	7,448
Total oxygen supplied (lb/day)	8,003
Mixing intensity in the reactor (hp/mil gal)	29
RAS flow rate (mgd)	3.41
RAS recycle percentage (%)	97.3
WAS flow rate (mgd)	0.072
RAS TSS concentration (mg/L)	4,500
Total sludge production (lb/day)	2,816
Reactor Detention Time (hr)	48.0
VOLR (Ib BOD/(thou cu ft-day))	4.99
Effluent CBOD5 (mg/L)	2.3
Effluent TSS (mg/L)	4.0
Effluent Ammonia-N (mg/L)	0.02
Effluent NO3-N (mg/L)	14.8
Effluent NO3-N W/denit (mg/L)	4.4

Assumptions:

 WWTP uses ~50% of total electric bill, shared w/ DW Plant

Analysis:

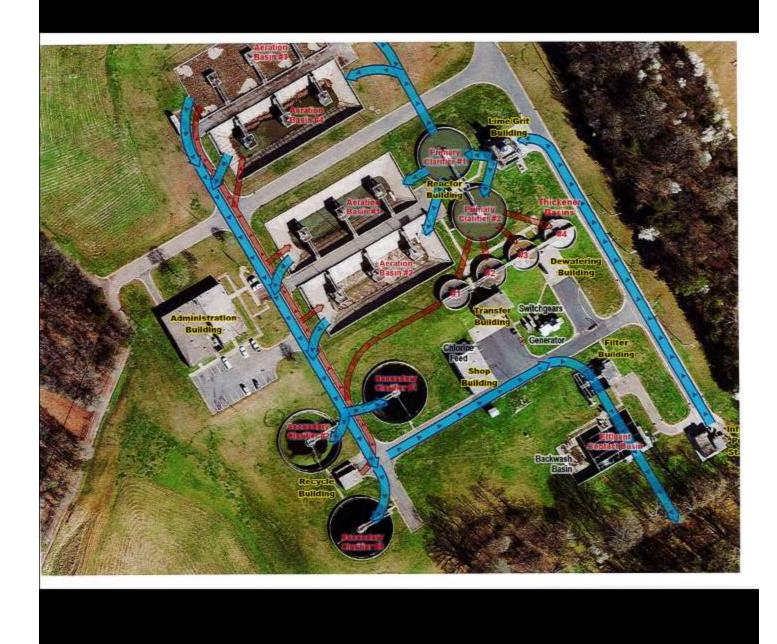
- Aerator electricity use = ~26% of bill, or about 50% of total WWTP
- This seems low for this facility no aerobic digesters UV disinfection or effluent pumping

Field OTR (lb O2 / hp-hr)	1.66
Aerator energy use (kWh/month)	94,068
Energy cost (\$/month)	4,703

Dec 2020

	051 000	Lablia
Energy Used	351,286	KWYD
	30	
Days in billing period	11,710	LMh
Average kWh per day		KAALI
Average cost per day	\$506.54	

Melinda Ward mward@edennc.us


Newton Clark Creek

Newton, North Carolina

Population: 13,000

MGD design flow

Newton's Action Plan

Phosphorus:

- Already achieving excellent removal (<1.0 mg/L avg)
- No additional steps recommended at this time

Nitrogen:

- Effluent TN currently ~25 mg/L with low NH3
- Evaluate VFDs and SCADA upgrade to allow routine on/off cycling of aerators.
- Start with 90 min off/6 hrs on. Monitor NH3 and NO3, and use ORP to fine tune off cycle
- <u>Rough</u> estimate of cost savings: \$40,000/year

Eric Jones ejones@newtonnc.gov

Stacy Rowe srowe@newtonnc.gov

Asheboro

-

0

AVERAGES FOR 2020

piral Lift	▶ JB1 ▶ [Preliminary		IB2	Primary	/1-6		Trickling	Filter	Secondary	 	Nit Pui	nps	Nitrificat Aeration		Fii CI	nal arifiers		Sand Filters	_→C12 /	502	cascade ►
		1 Pista Grit 1 Parshall Flu		P	rimary#7		Trickling Filter Pumps		Rec #1	Rec #	 ∉2	_ \		RA					7			
fluent ow Cap ctual	9 MGD 4.583812				6 Rectangle 1 Round Based on 9 2.40 Hrs DT	MGD	4 Pumps 6 Mgd Each	3 TF T 140 ft	anks Dia	4 Sec Ta 2.5 hrs 500 gpc Overflo	DT J/sf	4 Nit 7 MC	Pumps SD Each	2 300 h Blow er	T Blowers p		5 Hi 400	nal Clar. DT gpd/sf erfow	Deep	op Feed o Bed d Filters		
					756 gpd/sf	overflow								1 05 110	Biowei							4 222500
	on Dates	2 MCD		— L						60066	41.07	2472		NALCO	2227.050						Eff Flow	4.223598
art ograde	1962 1975									Sec SS Sec BOD	41.83 42.37			MLSS MLVSS	2237.056 1673.289						Eff SS Eff BOD	5.289267 2.797907
ograde		6 MGD								Sec BOD	42.37	· · · · · · · · · · · · · · · · · · ·		RAS	7076.608						Eff Nh3	0.169685
ograde		9 MGD								Seccob	170.5	5114		SA	58.75032							0.109065
graue	1990													MCRT	84.81678						INF	EFF
				F	rimary Sluc	ge	Second	ary Sludge						F/M Bod					BC	חנ	400 mg/l	2.80 mg/l
					-			,		•				F/M Cod					ТК		31.5 mg/l	
				•	<u> </u>									17101000	0.123134 WAS					03+NO2	2.6 mg/l	
Γ			1	SI BI	udge ending												/		TP		5.5 mg/l	
	Sludge Hand 3 RSP Pump	lling System		—L_		Digester	Gallons In			→ DT		Av	g Temp		% Vol Re					D in Aerati		.54 116/1
	4 TSP Pump	s 200 apm			SP			É					5 . c		<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>						<u></u>	
	2 DSP Pump 2 SFP Pump 1 DAF 600 s	s 400 GPM			umps	▶ □4	F Thickner		Digesters			► Dry	ing Bed	5	→	•						
	2 Digesters 4 1 Piston Pun 2 Ashebrool	ng 300 apm									,											
	Presses 16 Drying Be 1 Covered S	ds		Y			Thick Tank	Pres	ss		ess		' Cake H	lolding Li	meStb. 🔶	•						
	1 Uncovered Land Applica 1200 Dry Toi	Storage					¥	Thick	ening	Dew	atering	В	' Cake	Holding		<u>+</u> ,	Land	Applica	ation			
								Gallons		Gallons				TRUCK LO	DADS							
							9	% Poly		%Poly												
							9	% Thick		% Cake				TOTAL C	UBIC YARDS	PRES	S=		0			
			4																			

Previous Optimization Efforts

- Successfully proved we can BNR, more work to do to meet expected permit limits
- Air on for only 12 hrs instead of 24 hrs, huge savings
- Saving in pH adjusting chemical costs because denitrification process recovers pH and alkalinity
- We know what is happening in real time and can react accordingly

Asheboro's Action Plan

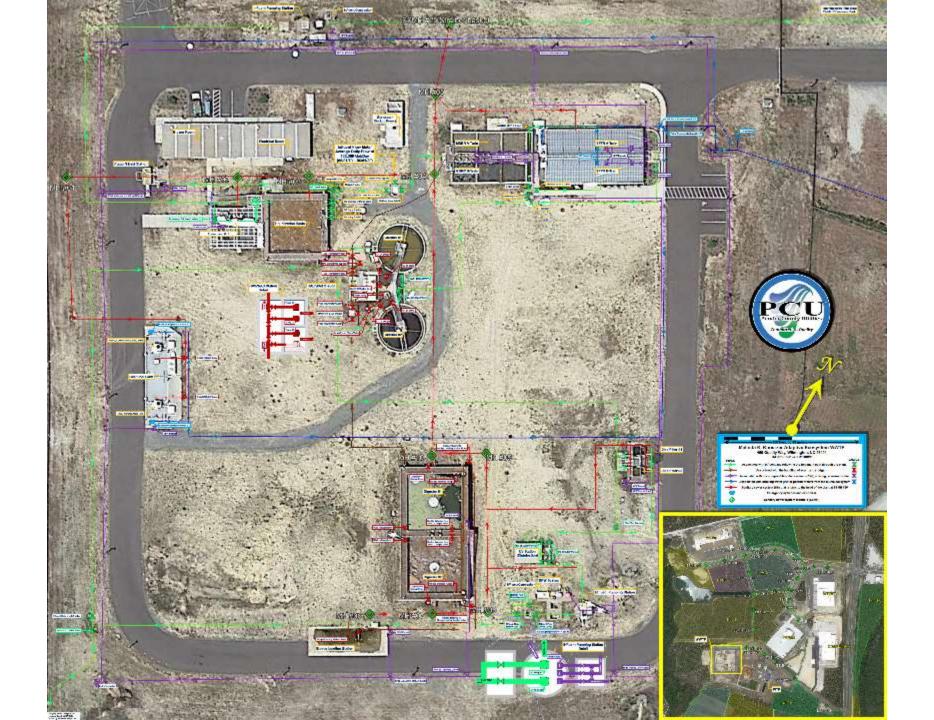
Phosphorus:

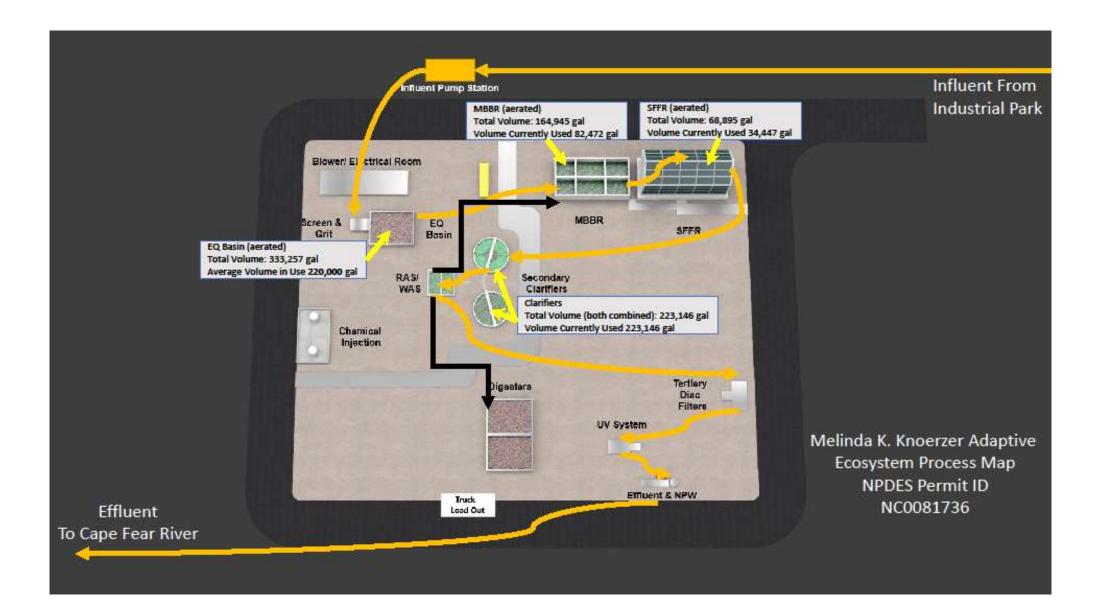
- Already achieving excellent removal (<1.0 mg/L avg)
- No additional steps recommended at this time
- Long term, consider using intermediate clarifier as side stream fermented

Nitrogen:

- Managing good TN removal using sugar water supplied by cereal manufacturer
- "Reach" goals include routine flooding of trickling filters to eliminate need for off-site carbon
- Consider using intermediate clarifier as side stream fermenter for additional Bio-P

Mike Wiseman mwiseman@ci.Asheboro.nc.us





Pender County, North Carolina

0.5 MGD design flow

Date	M3 MLSS	MLVSS	INF BOD (mg/l)	INF Flow (MGD)	F/M Ratio	HRT	Aeration Basin DO	INF Ammonia (mg/L)	INF Tphos (mg/L)	INF COD (mg/L)	EFF COD (mg/L)	EFF TSS (mg/L)
12/8/20	3500	1883	454	0.09	0.07	82	3.9	8.97	21.25	2886	43	8
12/9/20	3400	2360	999	0.12	0.16	62	5.1					8
12/10/20	3000	2075	957	0.14	0.21	53	4.3	4.21	10.75	2100	46	8
12/15/20	1650	1075	981	0.13	0.38	57	7.5	7.85	20	2114	91	24
12/16/20	1660	1220	1020	0.13	0.35	57	7.2					17
12/17/20	2040	1500	705	0.11	0.17	67	6.4	4.16	11.5	2078	82	14
12/21/20	3360	2400	234	0.09	0.03	82	4.8					4
12/22/20	3720	2540	595	0.13	0.10	57	4.1	6.34	46.25	1196	102	3
12/23/20	3800	2380	660	0.14	0.13	53	4.5					5
12/30/20	4420	2860	729	0.15	0.12	49	6.4					7
12/31/20	4075	2800	1110	0.15	0.19	49	4.7					2.5
1/5/21	2760	1660	451	0.18	0.16	41	5.3	4.14	16.5	1140	31	3
1/6/21	2540	1600	775	0.18	0.28	41	6.9					2.5
1/7/21	2680	1780	576	0.15	0.16	49	5.9	3.97	10.75	1316	49	2.5
1/12/21	3360	2120	320	0.17	0.08	44	7	3.65	47.25	1348	39	3
1/13/21	4140	2240	395	0.18	0.10	41	4.8					5
1/14/21	4340	2580	332	0.18	0.07	41	6.4	2.95	46.5	1498	48	4
1/19/21	2920	1680	350	0.17	0.11	44	7.5					4
1/20/21	1800	980	405	0.17	0.23	44	5.6					5
1/21/21	1580	4400???	533	0.18	0.07	41	6.7					4
1/26/21	1840	1220	750	0.22	0.44	34	7.1	4.75	63.25	1914	57	2.5
1/27/21	2200	1380	406	0.22	0.21	34	5.2					3
1/28/21	2120	1100	479	0.23	0.32	32	7.2	3.01	6.5	2550	39	3
2/2/21	2700	1340	897	0.22	0.48	34	6.7	10.3	100.25	4050	61	6
2/3/21	3040	1540	721	0.21	0.32	35	6					8
2/4/21	2100	1140	649	0.20	0.37	37	6.5	2.24	9.25	1282	37	4
2/9/21	3820	2300	183	0.19	0.05	39	5.3	2.83	22.75	874	18	2.5
2/10/21	3180	1920	277	0.20	0.09	37	5.9					2.5
2/11/21	2160	1380	290	0.20	0.14	37	6.3	1.46	5.25	784	25	2.5
2/16/21	1320	960	487	0.23	0.38	32	6.4	1.88	7	1018	24	2.5
2/17/21	1920	1260	334	0.23	0.20	32	6.7					2.5
2/18/21	1540	1020		0.22		34	6.1	3.5		1096	26	2.5
Averages	2771	1751	582	0.17	0.20	46	6.0	4.48	27.8	1720	48	5.5

A View of the Screen and grit station. EQ basin is off camera to the right.

A View of the EQ basin from the screen and grit station (off camera behind).

A View of the MBBR with the EQ basin and the secondary clarifiers in the background. Note the black biomedia in the water. These "bio-balls" provide the surface area for additional bacterial growth. Media pictured below.

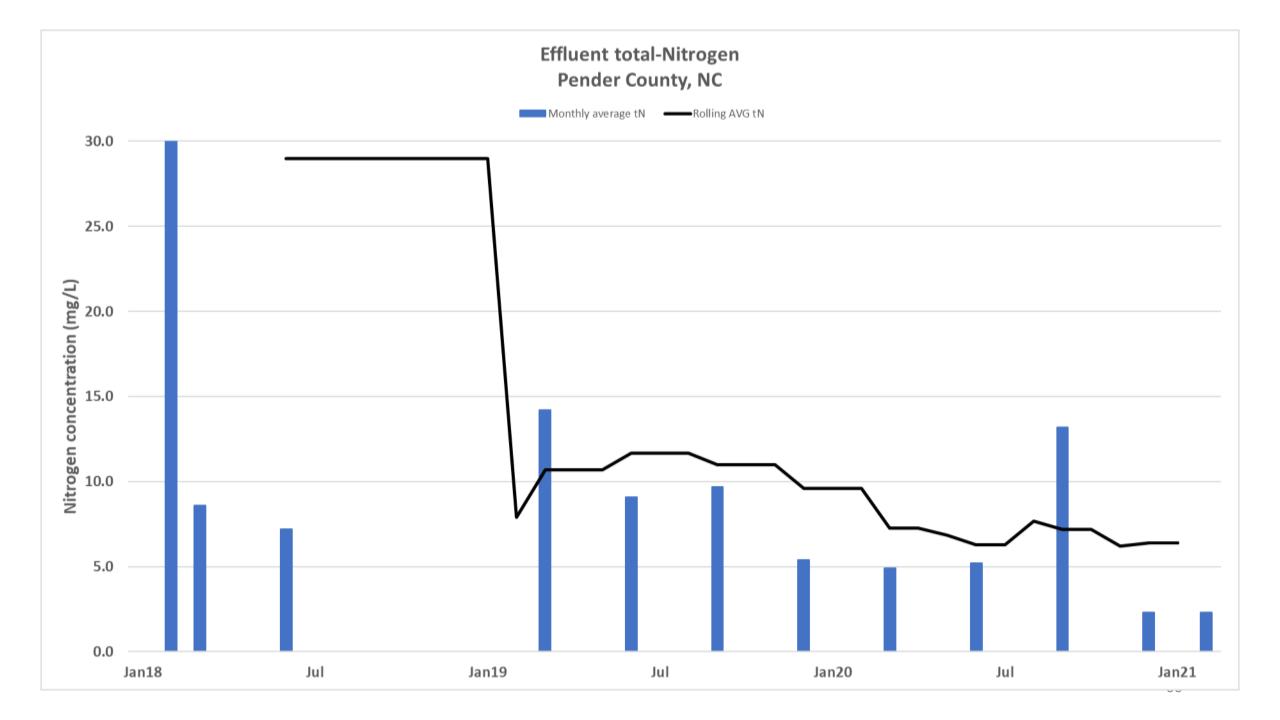
A View of the interior of the greenhouse / SFFR

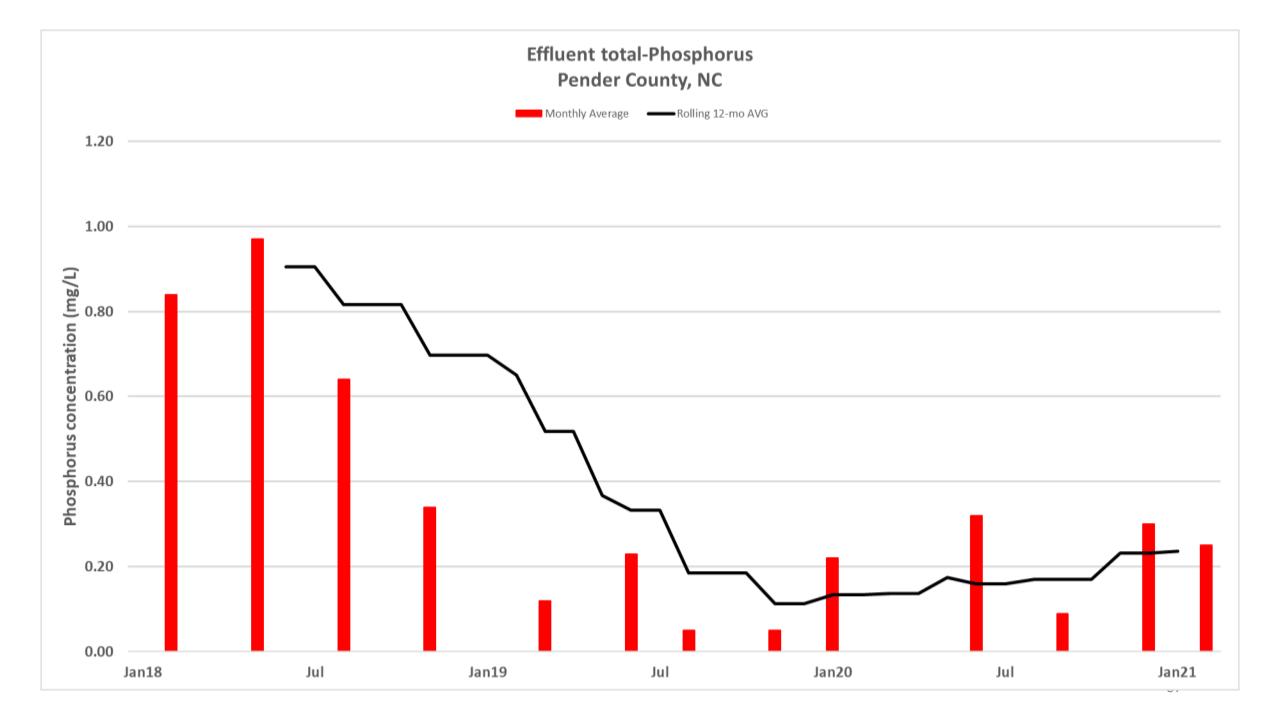
A View of the secondary clarifiers with the digesters background left. And RAS/WAS station behind, and to the right of the clarifiers.

A View of secondary clarifier 2.

A View of secondary clarifier 1 with the MBBR in the background (right).

A View of the Tertiary filters (left) and the UV disinfecting units (right) with the effluent pump and nonpotable water stations behind the UV.




A View of the aerobic digesters.

A fairly clean overhead view, north is straight up.

Matt Reeps mreeps@pendercountync.gov

Grant Weaver – Clean Water Ops G.weaver@cleanwaterops.com

Mary Tiger – Orange Water And Sewer Authority Mtiger@owasa.org

Terry Albrecht - Waste Reduction Partners TAlbrecht@wrpnc.org

Ron Haynes- Waste Reduction Partners **RHaynes@wrpnc.org**

Acknowledgements

US EPA

Brendan Held & Craig Hesterlee

NC DEQ / Waste Reduction Partners Terry Albrecht, Corey Basinger & Ron Haynes

U MEMPHIS

Larry Moore, PhD

ASHEBORO

Mike Wiseman

EDEN

Melinda Ward

NEWTON

Eric Jones, Stacy Rowe

PENDER COUNTY

Matt Reeps

REIDSVILLE

Scott Bryan

